Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3,3'-Dibromo-1,1'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]dibenzene

Wen-Kui Dong, ${ }^{\text {a* }}$ Yu-Jie Ding, ${ }^{\text {b }}$ Ya-Ling Luo, ${ }^{\text {a }}$ Zhong-Wu Lv $^{\text {a }}$ and Li Wang ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and ${ }^{\text {b }}$ Department of Biochemical Engineering, Anhui University of Technology And Science, Wuhu 241000, People's Republic of China
Correspondence e-mail: dongwk@mail.Izjtu.cn
Received 3 June 2008; accepted 16 June 2008
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.051 ; w R$ factor $=0.133 ;$ data-to-parameter ratio $=14.3$.

The molecule of the title compound, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$, lies on a twofold axis that passes through the middle atom of the threeatom trimethylene unit. The two aromatic rings are aligned at an angle of $76.02(4)^{\circ}$.

Related literature

For similar Schiff bases, see: Aysegul et al. (2005); Cordes \& Jencks (1962); Dong et al. (2008); Duan et al. (2007); Shi et al. (2007); Koehler et al. (1964).

Experimental

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=440.14$
Monoclinic, $C 2 / \mathrm{c}$
$a=24.397$ (3) A

$$
\begin{aligned}
& b=4.4848(4) \AA \\
& c=17.189(2) \AA \\
& \beta=114.009(2)^{\circ} \\
& V=1718.0(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection
Bruker SMART 1000 CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.210, T_{\text {max }}=0.397$
$($ expected range $=0.170-0.321)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050 \quad 105$ parameters
$w R\left(F^{2}\right)=0.133$
$S=1.07$
1497 reflections

> Mo $K \alpha$ radiation
> $\mu=4.73 \mathrm{~mm}^{-1}$
> $T=298(2) \mathrm{K}$
> $0.48 \times 0.35 \times 0.24 \mathrm{~mm}$

3683 measured reflections 1497 independent reflections 1179 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.094$

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was generously supported by the Foundation of the Education Department of Gansu Province (No. 0604-01) and the 'Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03-01 A).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2462).

References

Aysegul, G., Mehmet, T., Havva, D. \& Wheatley, R. A. (2005). Inorg. Chim. Acta, 358, 1785-1792.
Bruker (1996). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Cordes, E. H. \& Jencks, W. P. (1962). J. Am. Chem. Soc. 84, 832-837.
Dong, W. K., Duan, J. G., Chai, L. Q., Liu, G. L. \& Wu, H. L. (2008). J. Coord. Chem. 61, 1306-1315.
Duan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. \& Dong, W.-K. (2007). Acta Cryst. E63, o2704-o2705.
Koehler, K., Sandstrom, W. \& Cordes, E. H. (1964). J. Am. Chem. Soc. 86, 2413--2419.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shi, J., Dong, W., Zhang, Y. \& Gao, S. (2007). Acta Cryst. E63, o4080.

supplementary materials

Acta Cryst. (2008). E64, o1324 [doi:10.1107/S1600536808018187]

3,3'-Dibromo-1,1'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]dibenzene

W.-K. Dong, Y.-J. Ding, Y.-L. Luo, Z.-W. Lv and L. Wang

Comment

Schiff base compounds have been widely used as versatile ligands involved in various metal chelations to form transition metal complexes with interesting properties (Aysegul et al., 2005; Dong et al., 2008). Although most of Schiff base derivatives are stable in solution and in solid state, $\mathrm{C}=\mathrm{N}$ bonds often suffer exchange reaction (Koehler et al., 1964) as well as hydrolysis (Cordes \& Jencks, 1962). Rate constants of oxime formation are smaller than those of imine formation and the equilibrium constants are larger by several orders. Hence, bisoxime-type compound should be stable enough to resist the metathesis of the $\mathrm{C}=\mathrm{N}$ bonds. In this paper, a novel ligand, 3,3'-dibromo-1, 1^{\prime}-[propane-1,3-diyldioxybis(nitrilomethylidyne)]dibenzene (I) was designed and synthesized, and shown in Fig. 1.

The single-crystal structure of (I) is built up by discrete $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ molecules, in which all bond lengths are in normal ranges. There is a crystallographic twofold rotation axis passing through the middle point (symmetry code: $-x, y, 1 / 2$ $-z$) of the $\mathrm{C}-\mathrm{C}$ unit. The molecule adopts a trans conguration in which two benzane rings are apart from each other and form a dihedral angle of 76.02 (4) \AA. The oxime, bromo groups of (I) lie in trans positions relative to the middle point in the $\mathrm{N}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{N}$ linkage, which is similar to what is observed in our previously reported salen-type bisoxime compound of 2,2'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]diphenol (Duan et al., 2007). The molecule exhibits a zigzag chain array along a axis.

Experimental

3,3'-Dibromo-1,1'-[propane-1,3-diyldioxybis(nitrilomethylidyne)]dibenzene (I) was synthesized according to an analogous method reported earlier (Shi et al., 2007). To an ethanol solution (2 ml) of 3-bromo-benzaldehyde ($283.0 \mathrm{mg}, 1.48 \mathrm{mmol}$) was added an ethanol solution (3 ml) of 1,3-bis(aminooxy)propane $(78.6 \mathrm{mg}, 0.74 \mathrm{mmol})$. The mixed solution was stirred at 328 K for 6 h . The precipitate was filtered, and washed successively with ethanol and ethanol-hexane ($1: 4$), respectively. The product was dried under vacuum to yield 157.5 mg of (I). Yield, 48.3%. mp. $350.5-352.5 \mathrm{~K}$. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 45.76; H, 3.49; N, 6.47. Found: C, 45.66; H, 3.43; N, 6.29.

Colorless needle-like single crystals suitable for X-ray diffraction studies were obtained after several weeks by slow evaporation from a methanol-tetrahydrofuran-ethyl acetate mixed solution of (I).

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances $\mathrm{C}-\mathrm{H}=0.97\left(\mathrm{CH}_{2}\right), 0.93$ $\AA(\mathrm{CH})$, and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ and $1.5 U_{\mathrm{eq}}(\mathrm{O})$.

supplementary materials

Figures

Fig. 1. The molecule structure of (I) with atom numbering. Displacement ellipsoids for nonhydrogen atoms are drawn at the 30% probability level.

3,3'-Dibromo-1,1'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]dibenzene

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=440.14$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=24.397$ (3) \AA
$b=4.4848$ (4) \AA
$c=17.189(2) \AA$
$\beta=114.009(2)^{\circ}$
$V=1718.0(3) \AA^{3}$
$Z=4$
$F_{000}=872$
$D_{\mathrm{x}}=1.702 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2255 reflections
$\theta=2.5-27.9^{\circ}$
$\mu=4.73 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Rod, colorless
$0.48 \times 0.35 \times 0.24 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=298(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.210, T_{\text {max }}=0.397$
3683 measured reflections

1497 independent reflections
1179 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.094$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\text {min }}=1.8^{\circ}$
$h=-27 \rightarrow 28$
$k=-5 \rightarrow 5$
$l=-20 \rightarrow 15$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.061 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.60 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.66$ e \AA^{-3}

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Br1	$0.78652(2)$	$1.12437(15)$	$0.11896(3)$	$0.0608(3)$	
O1	$0.53639(12)$	$0.3149(7)$	$-0.13426(18)$	$0.0393(8)$	
N1	$0.58506(15)$	$0.4899(10)$	$-0.0798(2)$	$0.0352(9)$	
C1	$0.5538(2)$	$0.1605(10)$	$-0.1934(3)$	$0.0369(11)$	
H1A	0.5876	0.0299	-0.1635	0.044^{*}	
H1B	0.5653	0.3011	-0.2270	0.044^{*}	
C2	0.5000	$-0.0186(16)$	-0.2500	$0.0371(15)$	
H2A	0.4880	-0.1465	-0.2142	0.044^{*}	0.50
H2B	0.5120	-0.1465	-0.2858	0.044^{*}	0.50
C3	$0.5704(2)$	$0.6276(10)$	$-0.0265(3)$	$0.0398(12)$	
H3	0.5317	0.6039	-0.0296	0.048^{*}	
C4	$0.6117(2)$	$0.8206(10)$	$0.0390(3)$	$0.0350(11)$	
C5	$0.6701(2)$	$0.8759(10)$	$0.0463(3)$	$0.0368(11)$	
H5	0.6836	0.7885	0.0083	0.044^{*}	
C6	$0.7070(2)$	$1.0573(11)$	$0.1091(3)$	$0.0391(12)$	
C7	$0.6887(2)$	$1.1924(12)$	$0.1666(3)$	$0.0472(13)$	
H7	0.7144	1.3178	0.2087	0.057^{*}	
C8	$0.6313(3)$	$1.1373(11)$	$0.1600(3)$	$0.0504(14)$	
H8	0.6185	1.2245	0.1988	0.061^{*}	
C9	$0.5930(2)$	$0.9556(12)$	$0.0972(3)$	$0.0444(13)$	
H9	0.5544	0.9222	0.0935	0.053^{*}	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0451(4)$	$0.0844(6)$	$0.0468(4)$	$-0.0215(3)$	$0.0126(3)$	$-0.0037(3)$
O1	$0.0346(18)$	$0.042(2)$	$0.0377(19)$	$-0.0112(15)$	$0.0110(15)$	$-0.0071(16)$
N 1	$0.030(2)$	$0.036(2)$	$0.033(2)$	$-0.0059(17)$	$0.0067(17)$	$0.0016(19)$
C1	$0.038(3)$	$0.036(3)$	$0.035(2)$	$0.003(2)$	$0.014(2)$	$0.007(2)$
C2	$0.039(4)$	$0.026(4)$	$0.043(4)$	0.000	$0.013(3)$	0.000
C3	$0.037(3)$	$0.040(3)$	$0.039(3)$	$-0.009(2)$	$0.012(2)$	$0.002(2)$

C4						
C5	$0.040(3)$	$0.035(3)$	$0.029(2)$	$0.000(2)$	$0.013(2)$	$0.009(2)$
C6	$0.040(3)$	$0.041(3)$	$0.027(2)$	$-0.001(2)$	$0.012(2)$	$0.003(2)$
C7	$0.043(3)$	$0.044(3)$	$0.026(2)$	$-0.006(2)$	$0.009(2)$	$0.005(2)$
C8	$0.059(3)$	$0.042(3)$	$0.030(2)$	$-0.007(3)$	$0.008(2)$	$-0.005(2)$
C9	$0.066(4)$	$0.052(4)$	$0.041(3)$	$0.001(3)$	$0.029(3)$	$-0.007(3)$
	$0.047(3)$	$0.040(3)$	$0.050(3)$	$0.000(2)$	$0.024(3)$	$0.001(3)$

Geometric parameters ($\AA,{ }^{\circ}$)

Br1-C6	1.900 (4)
O1-N1	1.413 (4)
O1-C1	1.431 (5)
N1-C3	1.270 (6)
C1-C2	1.508 (6)
C1-H1A	0.9700
C1-H1B	0.9700
$\mathrm{C} 2-\mathrm{C} 1^{\text {i }}$	1.508 (6)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
C2-H2B	0.9700
C3-C4	1.453 (6)
N1-O1-C1	109.1 (3)
C3-N1-O1	109.9 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	106.5 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.4
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.4
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 1^{\text {i }}$	115.7 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.4
$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.4
$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.4
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.4
N1-C3-C4	122.6 (4)
N1-C3-H3	118.7
C4-C3-H3	118.7
C9-C4-C5	118.4 (4)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 3$	-179.7 (4)
$\mathrm{N} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	-179.4 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 1^{\text {i }}$	65.8 (3)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	178.7 (4)
N1-C3-C4-C9	-177.6 (4)
N1-C3-C4-C5	2.1 (7)
C9-C4-C5-C6	0.0 (6)
C3-C4-C5-C6	-179.7 (4)

C3-H3	0.9300
C4-C9	1.396 (6)
C4-C5	1.400 (6)
C5-C6	1.359 (6)
C5-H5	0.9300
C6-C7	1.381 (6)
C7- C 8	1.379 (7)
C7-H7	0.9300
C8-C9	1.372 (7)
C8-H8	0.9300
C9-H9	0.9300
C9-C4-C3	119.2 (4)
C5-C4-C3	122.3 (4)
C6-C5-C4	120.0 (4)
C6-C5-H5	120.0
C4-C5-H5	120.0
C5-C6-C7	121.8 (4)
C5-C6-Br1	119.3 (3)
C7- 6 - -Br 1	118.9 (4)
C8-C7-C6	118.5 (5)
C8-C7-H7	120.8
C6-C7-H7	120.8
C9-C8-C7	121.0 (4)
C9-C8-H8	119.5
C7-C8-H8	119.5
C8-C9-C4	120.3 (4)
C8-C9-H9	119.8
C4-C9-H9	119.8
C4-C5-C6-C7	-0.3 (7)
C4- $\mathrm{C} 5-\mathrm{C} 6-\mathrm{Br} 1$	179.0 (3)
C5-C6-C7-C8	0.7 (7)
$\mathrm{Br} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	-178.6 (4)
C6-C7-C8-C9	-0.8 (8)
C7-C8-C9-C4	0.6 (8)
C5-C4-C9-C8	-0.1 (7)
C3-C4-C9-C8	179.6 (5)

sup-4

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 3 \cdots \mathrm{C} 3 \#$	0.93	2.36	3.189	148

supplementary materials

Fig. 1

